____ **C.U.SHAH UNIVERSITY** Winter Examination-2020

Subject Name: Linear Algebra

Subject Code: 5SC()1LIA1	Branch: M.Sc. (Mathematics)	
Semester: 1	Date: 08/03/2021	Time: 11:00 To 02:00	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

SECTION – I					
Q-1		Attempt the following questions	(07)		
	a)	If A and B are finite dimensional subspaces of a vector space V, then $A + B$ is finite dimensional and dim $(A + B) = \dim A + \dim B - \dim (A \cap B)$.	(02)		
	b)	Prove that $L(S)$ is subspace of V.	(02)		
	c)	Let <i>V</i> be a finite dimensional vector space over <i>F</i> and $S, T \in A(V)$.show that $rank(ST) \leq rank(T)$.	(02)		
	d)	Define: Minimal Polynomial for <i>T</i> .	(01)		
Q-2		Attempt all questions	(14)		
	a)	Let V be a vector space over F then prove that V is isomorphic to a subspace of \hat{V} . If	(07)		
		V is finite dimensional then $V \cong \hat{V}$.			
	b)	Let <i>V</i> be a finite dimensional vector space over <i>F</i> and <i>W</i> be subspace of <i>V</i> . Show that <i>W</i> is finite dimensional, dim $W \le \dim V$ and $\dim(V/W) = \dim V - \dim W$.	(07)		
		OR			
Q-2		Attempt all questions	(14)		
	a)	Let V and W be vector space over F of dimension m and n respectively. Then prove that $HOM(V, W)$ is of dimension mn over F.	(06)		
	b)	Prove that $W^{00} = W$	(05)		
	c)	If v_1, v_2, \dots, v_n are in V then either they are linearly independent or some v_k is a linear combination of preceding one's v_1, v_2, \dots, v_{k-1} .	(03)		
Q-3		Attempt all questions	(14)		
	a)	If \mathcal{A} is an algebra over F with unit element then prove that \mathcal{A} is isomorphic to a subalgebra of $A(V)$ for some vector space V over F .	(05)		
	b)	If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V on to V.	(05)		

	c)	Let <i>V</i> be finite dimensional over <i>F</i> and $T \in A(V)$ show that the number of characteristic root of <i>T</i> is atmost n^2 .	(04)
		OR	
Q-3		Attempt all questions	(14)
	a)	If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and only if the constant term in the minimal polynomial for T is nonzero.	(05)
	b)	If <i>V</i> is finite dimensional over <i>F</i> , and let $S, T \in A(V)$ and <i>S</i> be regular, then prove that $\lambda \in F$ is chatracteristic root of <i>T</i> if and only if it is a characteristic root of $S^{-1}TS$.	(05)
	c)	Let V be a finite dimensional vector space over F. If $T \in A(V)$ is right invertible then T is invertible.	(04)
		SECTION – II	
Q-4		Attempt the following questions	(07)
C	a)	Let $A, B \in M_n(F)$, show that $AB - BA \neq I$.	(02)
	b)	If $A \in M_n(F)$ is regular then $\det(A) \neq 0$ and $\det(A^{-1}) = \frac{1}{\det A}$.	(02)
	c)	Find the inertia of quadratic equation $2x_1x_2 + 2x_1x_3 = 0$.	(02)
	d)	Define: Basic Jordan block.	(01)
Q-5		Attempt all questions	(14)
C	a)	Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Then show that the invariants of T are unique.	(07)
	b)	Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the characteristic roots of T are in F then there is a basis of with respect to which the matrix of T is (upper) triangular.	(07)
		OR	
Q-5		Attempt all questions	(14)
	a)	Let <i>V</i> be a finite dimensional vector space over <i>F</i> and $T \in A(V)$ and <i>W</i> be subspace of <i>V</i> invariant under. Then <i>T</i> induce a map $\overline{T}: V/W \to V/W$ defined by $\overline{T}(v+W) = Tv + W$ show that $\overline{T} \in A(V/W)$. Further \overline{T} satisfies every polynomial satisfies by <i>T</i> . If $p_1(x)$ and $p(x)$ are minimal polynomial for \overline{T} and <i>T</i> respectively then show that $p_1(x)/p(x)$.	(07)
	b)	Two nilpotent linear transformations are similar if and only if they have the same invariants.	(07)
Q-6		Attempt all questions	(14)
C	a)	Let $A, B \in M_n(F)$, show that $\det(AB) = \det A \cdot \det B$.	(05)
	b)	Identify the surface given by $11x^2 + 6xy + 19y^2 = 80$. Also convert it to the standard form by finding the orthogonal matrix <i>P</i> .	(05)
	c)	Interchanging two rows of matrix changes the sign of its determinant.	(04)
0(OR	(1.4)
Q-6	a)	Attempt all questions State and prove Cramer's rule.	(14) (05)
		Let $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a map. Then f is bilinear if and only if there exist $\alpha_{ij} \in \mathbb{R}$,	(05)
	,	$1 \le i, j \le n$ with $\alpha_{ij} = \alpha_{ji}$ such that $f(x, y) = \sum_{i,j=1}^n \alpha_{ij} x_i y_j$.	
	c)	Let <i>F</i> be a field of characteristic 0 and <i>V</i> be a vector space over <i>F</i> . If $S, T \in A(V)$ such that $ST - TS$ commutes with <i>S</i> then show that $ST - TS$ is nilpotent.	(04)

